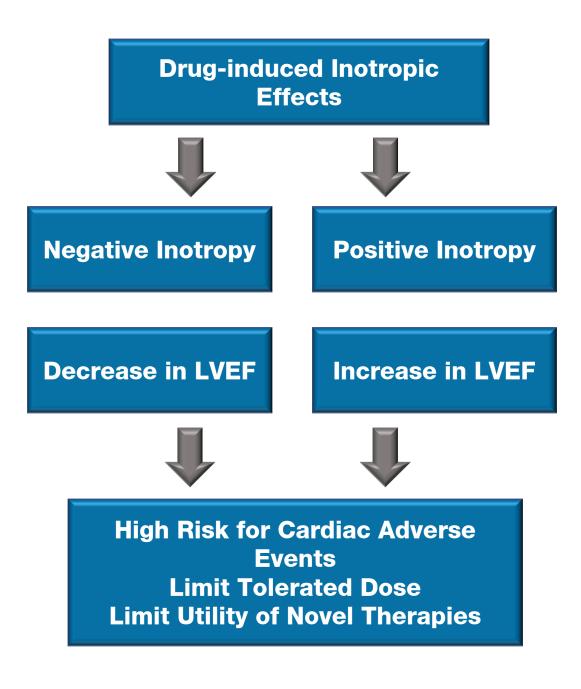
Adult Human Primary Cardiomyocytes: Predicting Inotropic Mechanisms of Action

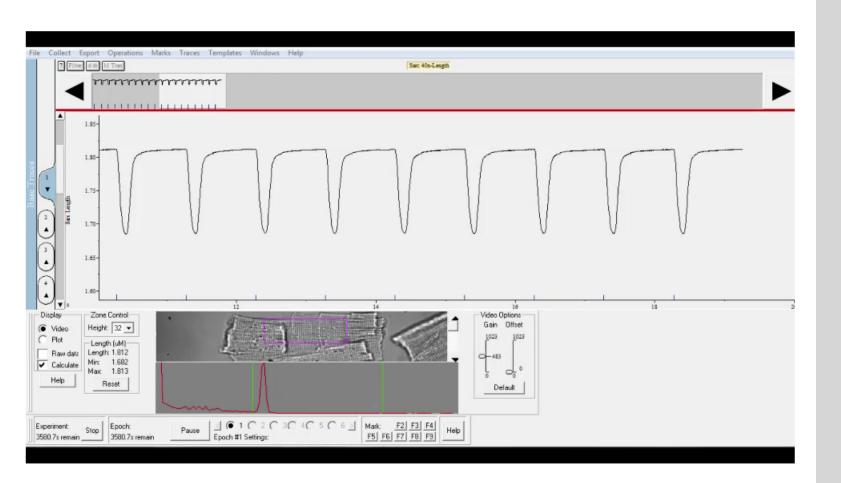
> HESI Cardiac Safety Committee Workshop May 15-16, 2018


> > Najah Abi-Gerges, Ph.D. Vice President R&D

- Need for Preclinical Contractility Safety Testing
- Human Cardiomyocyte Excitation-Contraction Coupling
- Identification of Drug-induced Inotropic Effects
- Predicting Inotropic Mechanisms of Action
- Summary & Questions

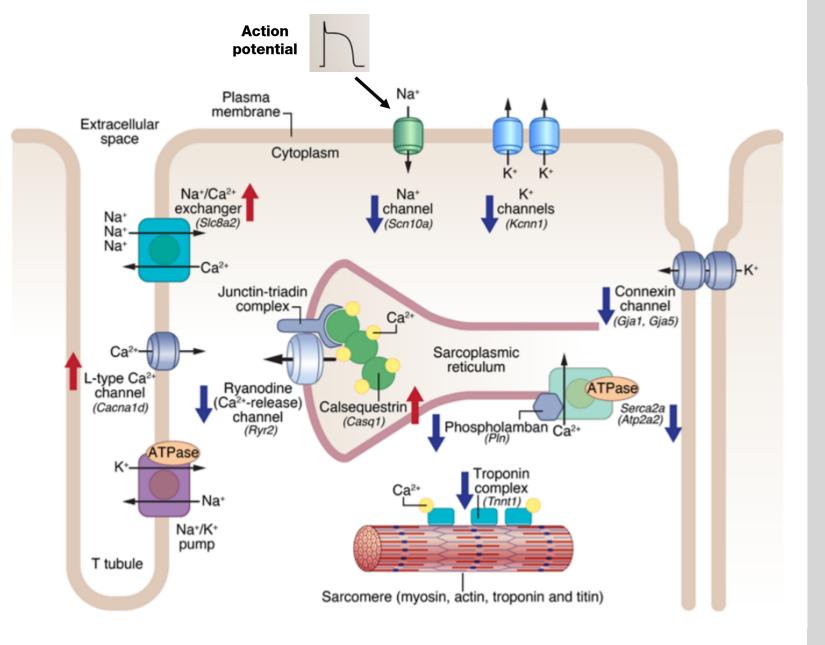
Overview

Need for Preclinical <u>Human</u> Contractility Safety Testing


Early stages of drug discovery

- Address both positive and negative inotropic risks
- Predictive of clinical outcome
- Scalable to medium- / high-throughput

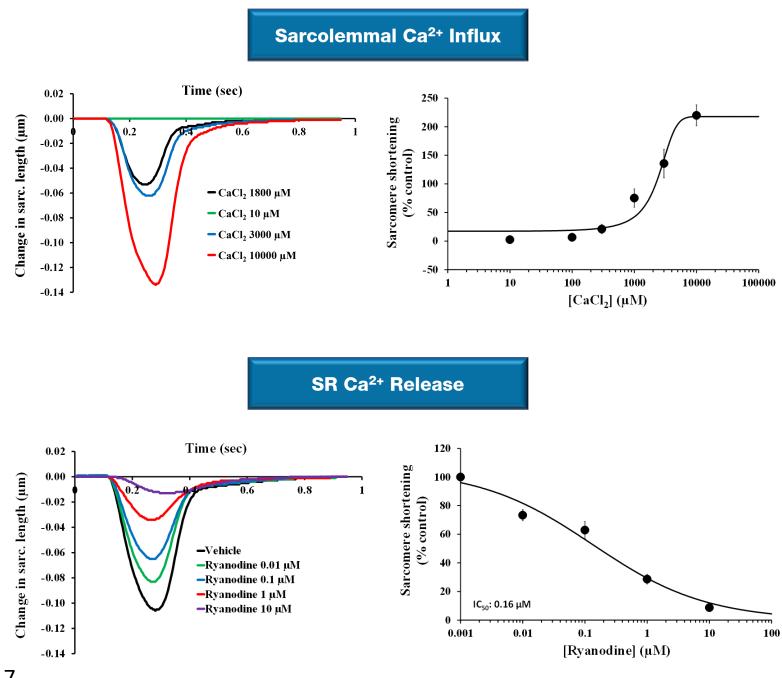
Required features for an Adult Human Primary Cardiomyocyte Inotropic Contractility Assay



Non-Invasive measurement of contraction using Bright-Field Imaging

> Low Technical Complexity No Cytotoxic Reagents High Information Content

IonOptix: Sarcomere shortening measured by digital cell geometry tracking

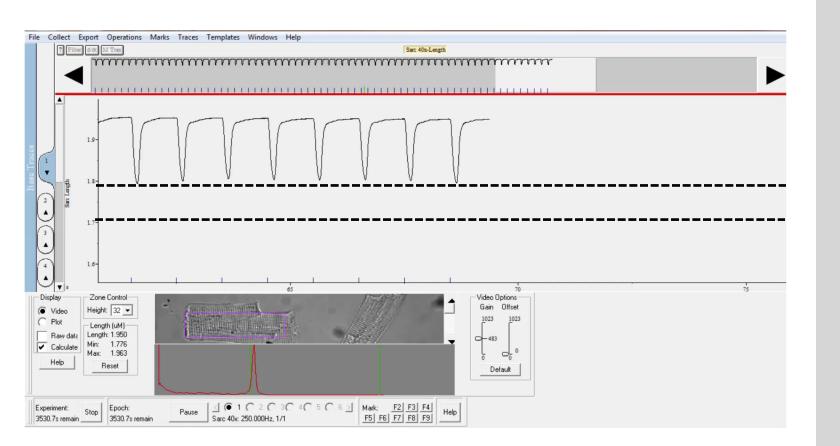

Excitation-Contraction Coupling

Converting an electrical stimulus to a mechanical response

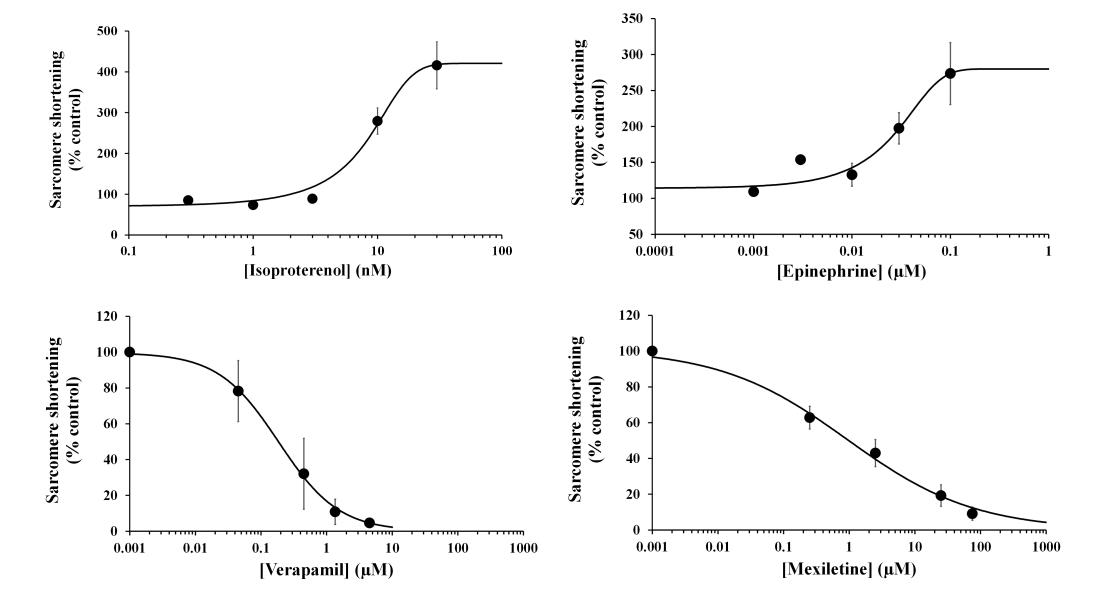
Ca²⁺-induced Ca²⁺ release (CICR)

Baskin et al., 2016 JCI

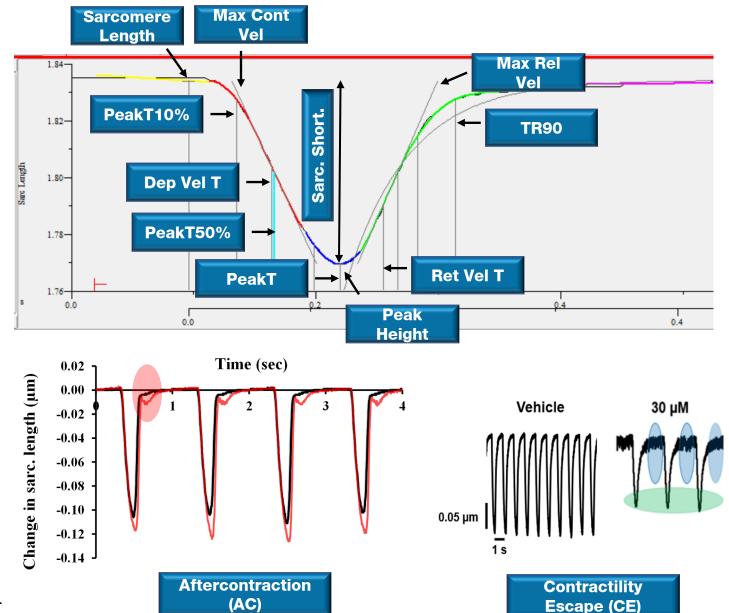
Sarcolemmal Ca²⁺ Influx and CICR Regulate Systolic Ca²⁺


> Ryanodine: Ryanodine receptor (RyR) inhibitor

Inotropic Effect	Mechanism of Action	Investigation			
Positive	Na⁺/K⁺ pump inhibition	Digoxin	This study		
Positive	Na⁺/K⁺ pump inhibition	Ouabain	This study		
Positive	Na [⁺] /Ca ^{2⁺} exchanger inhibition	SEA-0400	This study		
Positive	Myosin activation	Omecamtiv Mecarbil	This study		
Positive	Ca ²⁺ sensitization	Levosimendan	This study		
Positive	Non-selective β -adrenoceptor activation	Isoproterenol	This study		
Positive	Non-selective β -adrenoceptor activation	Epinephrine	This study		
Positive	β1-adrenoceptor activation	Dobutamine	This study		
Positive	PDE3 inhibition	Milrinone	This study		
Positive	PDE inhibition	IBMX	This study		
Positive	Ca ²⁺ channel activation	Bay-K 8644	This study		
Positive	Adenylyl cyclase activation	Forskolin	This study		
Positive	Hypercalcemia	CaCl2	This study		
Positive	SERCA activation	N106	This study		
Positive	RyR activation	Caffeine	This study		
Negative	SERCA inhibition	Thapsigargin	This study		
Negative	RyR inhibition	Ryanodine	This study		
Negative	Ca ²⁺ channel inhibition	Nitrendipine	Nguyen et al., 2017		
Negative	Ca ²⁺ channel inhibition	Nifedipine	Nguyen et al., 2017		
Negative	Ca ²⁺ channel inhibition	Diltiazem	Nguyen et al., 2017		
Negative	Ca ²⁺ channel inhibition	Mibefradil	Nguyen et al., 2017		
Negative	Ca ²⁺ channel inhibition	Verapamil	Nguyen et al., 2017		
Negative	Na+ channel inhibition	Mexiletine	Nguyen et al., 2017		
Negative	Na+ channel inhibition	Flecainide	Nguyen et al., 2017		


Excitation-Contraction Coupling Modulation with Well Characterized Controls

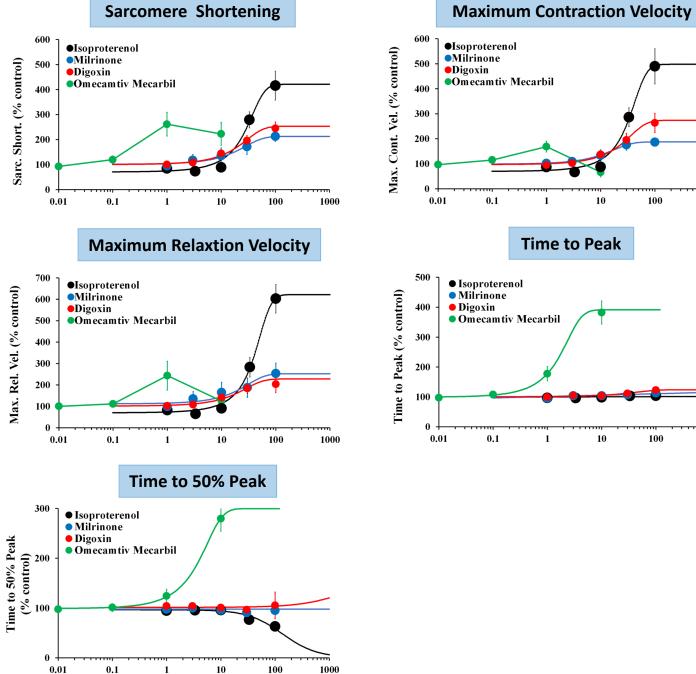
Isoproterenol-induced Positive Inotropic Effect



Compounds associated with either positive or negative inotropic effect can be identified

• Assessment of drug effects on sarcomere shortening provides phenotypic outcome only

• Effects of drugs on additional contractility transient parameters were also evaluated:

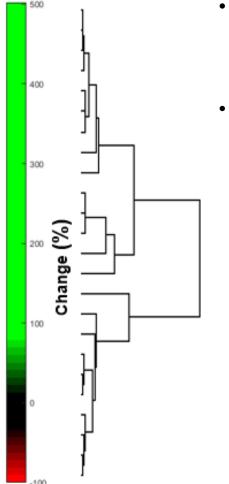

Can Mechanistic Activity Be Derived from Phenotypic Data?

Sarcomere Shortening

Drug - Multiple of fETPC

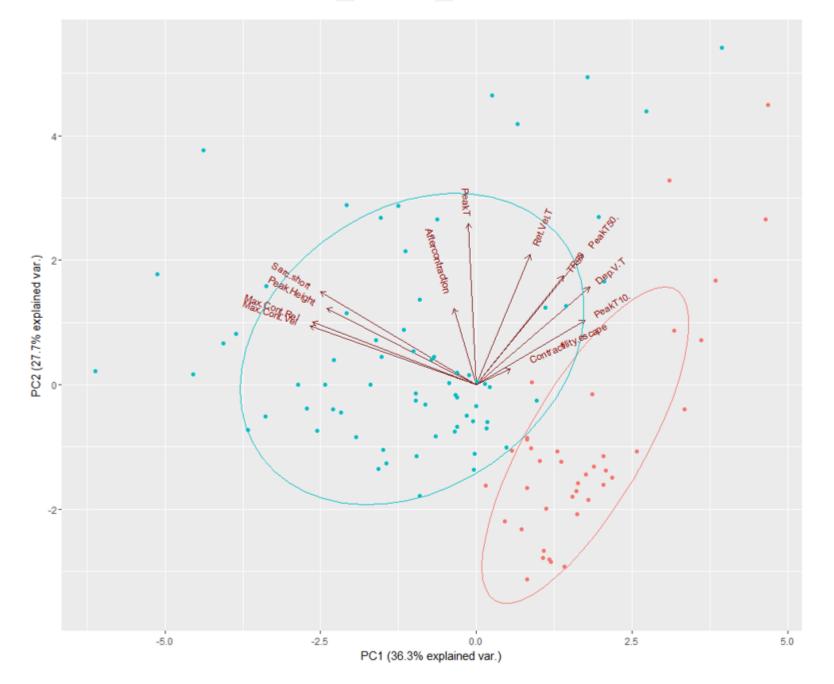
12

Finger-Printing Different Positive Inotropic Mechanisms of Action

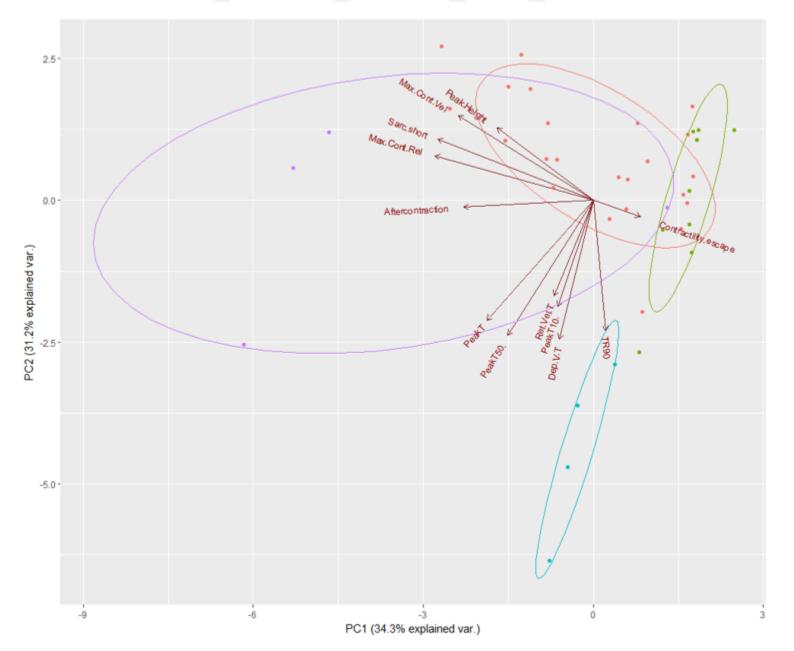

100

100

1000


Fr	pinephrine	0	0	-26	2	3	-26	-26	-4	174	174	238	230	500
-	IBMX	0	0	-19	-4	-5	-13	-15	-11	87	89	149	146	
D	obutamine	0	0	-15	0.6	3	-15	0	-6	91	96	122	150	1 I
	proterenol	0	25	-38	4	1	-49	-56	-19	174	315	390	502	l l
130	Forskolin	0	25	-30	29	38	-4	-30	34	154	163	157	155	400
	Quabain	40	40	-12	17	20	-4	-14	18	128	135	157	152	
	Digoxin	40	57								145			
	-			5	23	41	12	6	34	111		163	103	
	CaCl2	0	0	11	28	18	12	-2	94	106	119	83	111	300
	SEA-0400	0	0	19	10	9	56	27	20	66	65	68	77	
	Milrinone	0	50	-5	13	5	-21	-23	-5	102	112	86	153]
	N-106	0	40	3	3	4	-6	-3	3	34	34	32	61	
	Bay-K 8644	0	60	-15	4	4	-11	-12	13	71	76	101	102	200 5
Leve	osimendan	0	75	2	-4	-9	-12	-1	1	30	30	28	21	e –
	Caffeine	0	100	48	40	37	36	58	141	121	127	26	114	s" -
	iv Mecarbil	0	60	179	282	248	122	114	151	106	122	-34	24	Change (%)
	Ryanodine	0	0	64	25	85	58	144	119	-91	-91	-94	-90	- 100 -
Th	apsigargin	0	75	26	16	16	48	29	39	-40	-40	-46	-51	-
	Flecainide	67	0	-2	-9	3	84	9	56	-91	-91	-88	-95	1
N	itrendipine	0	0	-14	-12	-18	42	-2	6	-63	-63	-52	-70	i i
	Verapamil	0	0	-17	-20	-9	63	19	24	-94	-94	-89	-95	1
	Mexiletine	30	0	-22	-12	-10	-14	-15	18	-91	-91	-82	-94	۲ آ
	Mibefradil	0	0	-2	-7	-6	-7	7	37	-57	-57	-62	-63	
	Diltiazem	0	0	-20	-22	-14	-24	-24	27	-73	-73	-64	-81	
	Nifedipine	0	0	-14	-22	-15	-23	-14	44	-83	-83	-81	-89	-100
		E.	Peak	50%	Pet	Peak	Dep	leil x	Racht	sarce N	nort con	r vel	Rel	- 100
									C	1	~ A	0		

- Hierarchical Clustering Analysis at top test concentration
- Drug-induced effects on contractility transient parameters may allow identification of mechanisms of action (MoA)



🔶 calcium inhibition 🔸 calicum activation

 Separating compounds between those increasing and decreasing Ca²⁺, clouds represent the 68% confidence interval of predicting if a novel unknown compound increases or decreases Ca²⁺

- Ca2+ channel inhibition - Na+ channel inhibition - RyR inhibition - SERCA inhibition

When considering four negative inotropic MoA, clouds represent the 68% confidence interval of predicting if a novel unknown compound inhibits Ca²⁺ channel, Na⁺ channel, RyR or SERCA

- Adult human primary cardiomyocyte-based model:
 - 1) Most human relevant model for identifying the potential of drugs to modulate contractility
 - 2) Scalable to medium- / high-throughput
 - 3) Efficient and cost effective
 - 4) More predictive for contractility assessment than models based on stem-cell derived cardiomyocytes
- Integrating drug-induced effects on contractility parameters may allow prediction of mechanistic activity

Summary

• Thank you very much for your attention!

