ADULT HUMAN HEART
HIGH-QUALITY TISSUE

- **Aorta**
 - CAR-101/F
 - CAR-101/P
 - CAR-101/R

- **Aortic Valve**
 - CAR-102/F
 - CAR-102/P
 - CAR-102/R

- **Aortic Semilunar Valve**
 - CAR-103/F
 - CAR-103/P
 - CAR-103/R

- **Ascend Coronary R**
 - CAR-104/F
 - CAR-104/P
 - CAR-104/R

- **Atrium Appendage L**
 - CAR-108/F
 - CAR-108/P
 - CAR-108/R

- **Atrium Appendage R**
 - CAR-109/F
 - CAR-109/P
 - CAR-109/R

- **Atrium Trabecula L**
 - CAR-110/F
 - CAR-110/P
 - CAR-110/R

- **Atrium Trabecula R**
 - CAR-111/F
 - CAR-111/P
 - CAR-111/R

- **Atrium Wall L**
 - CAR-112/F
 - CAR-112/P
 - CAR-112/R

- **Atrium Wall R**
 - CAR-113/F
 - CAR-113/P
 - CAR-113/R

- **Bicuspid Valve**
 - CAR-114/F
 - CAR-114/P
 - CAR-114/R

- **Brachiocephalic Artery**
 - CAR-116/F
 - CAR-116/P
 - CAR-116/R

- **Carotid Artery L**
 - CAR-118/F
 - CAR-118/P
 - CAR-118/R

- **Carotid Artery R**
 - CAR-119/F
 - CAR-119/P
 - CAR-119/R

- **Circumflex Artery**
 - CAR-120/F
 - CAR-120/P
 - CAR-120/R

- **Coronary L**
 - CAR-122/F
 - CAR-122/P
 - CAR-122/R

- **Coronary R**
 - CAR-123/F
 - CAR-123/P
 - CAR-123/R

- **Descend Coronary L**
 - CAR-126/F
 - CAR-126/P
 - CAR-126/R

- **Descend Coronary R**
 - CAR-127/F
 - CAR-127/P
 - CAR-127/R

- **Endocardium**
 - CAR-128/F
 - CAR-128/P
 - CAR-128/R

- **Epicardium**
 - CAR-129/F
 - CAR-129/P
 - CAR-129/R

- **Normal & Diseased Tissue Available**

*F — Frozen
P — Formalin-Fixed
R — RNAlater®

www.anabios.com

Early Human Insights
ADULT HUMAN HEART
HIGH-QUALITY TISSUE

- Mitral Valve
 CAR-131/F
 CAR-131/P
 CAR-131/R

- Myocardium L
 CAR-133/F
 CAR-133/P
 CAR-133/R

- Myocardium R
 CAR-134/F
 CAR-134/P
 CAR-134/R

- Papillary L
 CAR-136/F
 CAR-136/P
 CAR-136/R

- Papillary R
 CAR-136/F
 CAR-136/P
 CAR-136/R

- Pulmonary Semilunar Valve
 CAR-137/F
 CAR-137/P
 CAR-137/R

- Pulmonary Vein
 CAR-138/F
 CAR-138/P
 CAR-138/R

- Septum
 CAR-140/F
 CAR-140/P
 CAR-140/R

- Sinoatrial Node
 CAR-141/F
 CAR-141/P
 CAR-141/R

- Subclavian Artery L
 CAR-143/F
 CAR-143/P
 CAR-143/R

- Subclavian Artery R
 CAR-144/F
 CAR-144/P
 CAR-144/R

- Tricuspid Valve
 CAR-146/F
 CAR-146/P
 CAR-146/R

- Ventricular Outflow Tract L
 CAR-150/F
 CAR-150/P
 CAR-150/R

- Ventricular Outflow Tract R
 CAR-151/F
 CAR-151/P
 CAR-151/R

- Ventricular Purkinje L
 CAR-152/F
 CAR-152/P
 CAR-152/R

- Ventricular Purkinje R
 CAR-153/F
 CAR-153/P
 CAR-153/R

- Ventricle L
 CAR-148/F
 CAR-148/P
 CAR-148/R

- Ventricle R
 CAR-149/F
 CAR-149/P
 CAR-149/R

- Ventricle Trabecula L
 CAR-154/F
 CAR-154/P
 CAR-154/R

- Ventricle Trabecula R
 CAR-155/F
 CAR-155/P
 CAR-155/R

- Ventricle Trabecula R
 CAR-155/F
 CAR-155/P
 CAR-155/R

Sales & Inquiries:
(858) 224-7360
info@anabios.com

AnaBios
Early Human Insights
<table>
<thead>
<tr>
<th>Tissue or Cell Model</th>
<th>Functional Parameter</th>
<th>Measured Endpoint</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult Human Primary Atrial & Ventricular Cardiomyocytes</td>
<td>Contractility</td>
<td>• Myocyte contraction (sarcomere shortening)</td>
<td>• Integrity of excitation-contraction coupling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Changes in contractility transient’s parameters</td>
<td>• Identification of drug-related contractility & arrhythmia risk</td>
</tr>
<tr>
<td></td>
<td>Ion channel function</td>
<td>Ionic currents</td>
<td>Drug activity on cardiac ion channels</td>
</tr>
<tr>
<td></td>
<td>Action potential</td>
<td>• Action potentials</td>
<td>Drug effects on cardiac excitability, depolarization & repolarization</td>
</tr>
<tr>
<td></td>
<td>generation</td>
<td>• Changes in action potential’s parameters</td>
<td></td>
</tr>
<tr>
<td>Adult Human Primary Cardiac Fibroblasts</td>
<td>Fibrosis</td>
<td>Changes in collagen expression</td>
<td>Drug-related induction of fibrosis</td>
</tr>
<tr>
<td>Adult Human Ventricular or Atrial Trabeculae</td>
<td>Contractility</td>
<td>• Trabeculae contraction force</td>
<td>• Integrity of excitation-contraction coupling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Changes in contractility transient’s parameters</td>
<td>• Identification of drug-related contractility risk</td>
</tr>
<tr>
<td>Adult Human Ventricular Trabeculae</td>
<td>Action potential</td>
<td>• Action potentials</td>
<td>Drug effects on cardiac excitability, depolarization & repolarization (arrhythmia risk)</td>
</tr>
<tr>
<td></td>
<td>generation</td>
<td>• Changes in action potential’s parameters</td>
<td></td>
</tr>
<tr>
<td>Adult Human Sinoatrial Node</td>
<td>Spontaneous action</td>
<td>• Spontaneous action potentials frequency</td>
<td>Identification of drug-related chronotropic activity</td>
</tr>
<tr>
<td></td>
<td>potential generation</td>
<td>• Changes in action potential frequency</td>
<td></td>
</tr>
<tr>
<td>Adult Human Coronary Rings</td>
<td>Force of contraction & relaxation</td>
<td>Contraction force</td>
<td>Identification of drug-related hypo-, hyper-tension risk</td>
</tr>
</tbody>
</table>
VALIDATION OF HUMAN HEART CELLS

This figure shows a typical human heart that AnaBios uses to isolate cardiomyocytes and phase contrast microscopy images of representative adult human primary cardiomyocytes. Isolated cardiomyocytes were found to be Ca2+-tolerant, retain rod-shaped morphology and exhibit cross striations.

Identification of Dofetilide arrhythmic risk: Compared to the black control trace, the contractility transients recorded in the presence of Dofetilide (0.02μM, red trace) induce episodes of “after-contraction” (AC, red shaded area) at a pacing frequency of 1Hz.

Identification of Verapamil safety and negative inotropic potential: Compared to the black control trace, the contractility transients recorded in the presence of Verapamil at 0.01, 0.1, 1, and 10μM inhibit sarcomere shortening with no AC episodes at a pacing frequency of 1Hz.

Identification of Isoproterenol positive inotropic potential: Compared to the black control trace, the contractility transients recorded in the presence of Isoproterenol (0.03μM, red trace) increase sarcomere shortening at a pacing frequency of 1Hz.

High-Quality Human Tissue for Drug Discovery & Research

AnaBios offers high-quality human heart tissue ethically-sourced from consenting donors. Our human tissue samples are processed utilizing proprietary methods to maximize the preservation of physiological function.

AnaBios offers both normal and diseased human heart tissue and provides demographic details, including sex, age, race and BMI.

For more information, please email info@anabios.com or call (868) 366-8608.