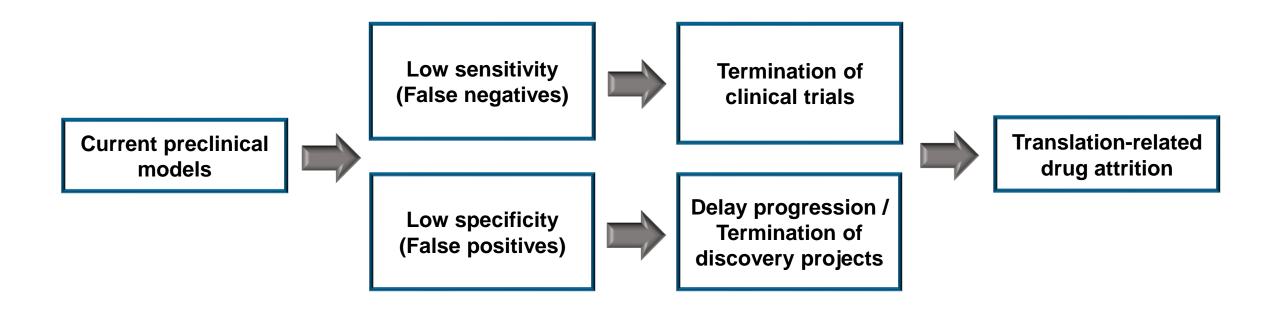
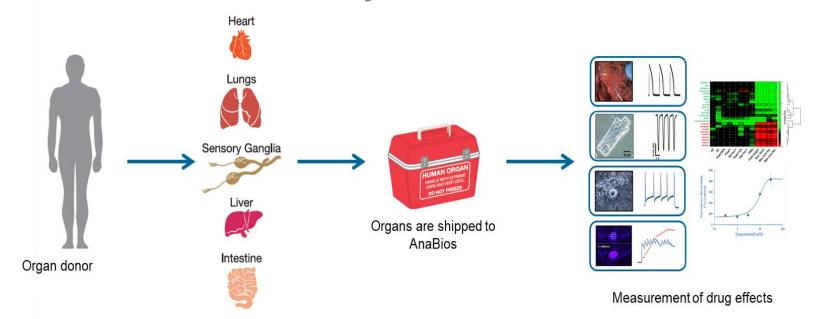
Adult Human Ex-Vivo Models for Preclinical Cardiac Safety Assessment of Drugs


Dr. Najah Abi-Gerges VP of R&D

najah.abigerges@anabios.com

Current Preclinical Cardiac Safety Approaches Have Significant Limitations



Human cardiac models are urgently needed

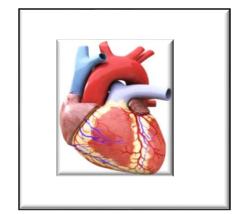
for detection of drug-induced cardiotoxicity

Enabling Drug Discovery in Human Healthy and Diseased Tissues

Organs are collected and perfused with proprietary solutions

- > Tissue harvesting methods and solutions are designed to avoid ischemic damage and reperfusion injury
- > Complete chain of custody, processing methods and rigorous QC ensure excellent tissue quality
- ➤ Large U.S.A.-based network ensures the availability of samples
- Excellent heart quality permits integrated human cardiac drug discovery at the preclinical stages

Human Ex-Vivo


Cardiac Safety Assessment at AnaBios

CELL-BASED ASSAYS

(Optimization of drugs)

Arrhythmia & Inotropy

Ventricular or atrial myocytes contractility

>1000 ex vivo human hearts tested 2-4 hearts / week Intracellular Ca²⁺
Dynamics
Ventricular Myocytes

Action Potential Ventricular & Atrial Myocytes I-clamp

Ion Channel Block

Ventricular or atrial myocytes V-clamp

Cardiac Fibrosis
Cardiac Fibroblasts

TISSUE-BASED ASSAYS

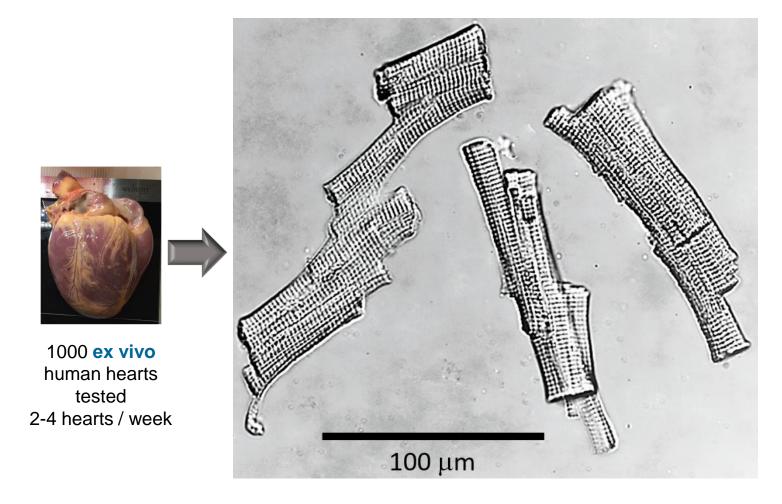
(Nomination of drugs)

Pro-arrhythmia

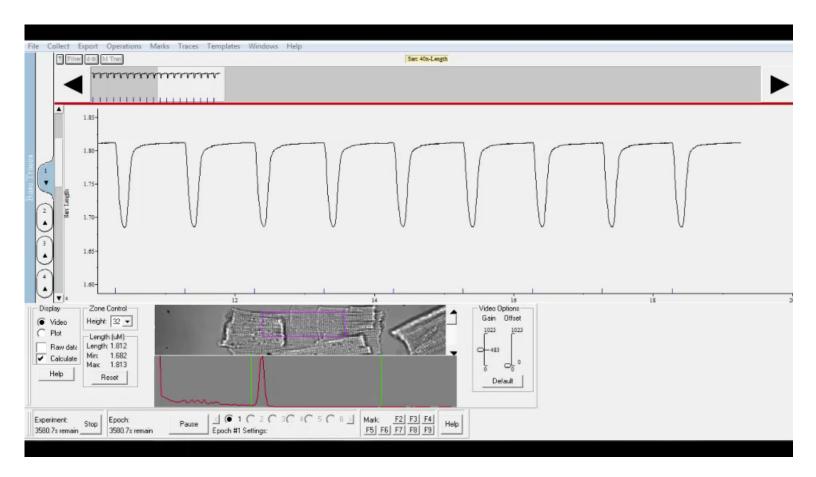
Action Potential
Ventricular
Trabeculae

Chronotropy

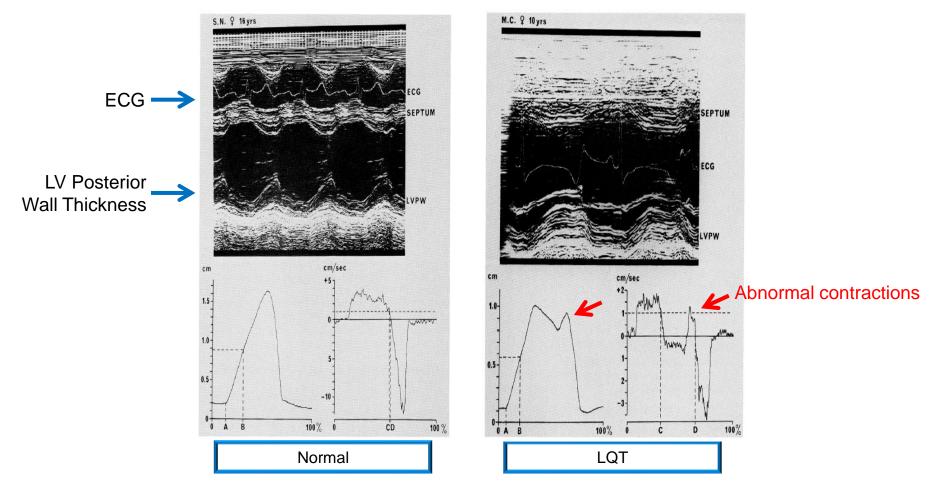
Spontaneous Action Potential Sinoatrial Node


Inotropy

Contractility
Ventricular & Atrial
Trabeculae

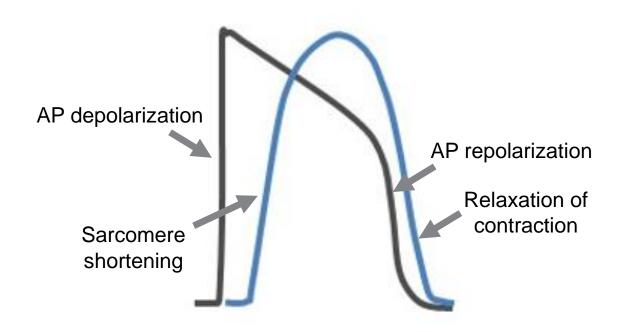

Vasoconstriction Dilation Coronary Rings

New Isolation Method Provides High Yield of Cardiomyocytes


Non-Invasive Measurement of Contraction Full Retention of Cardiomyocyte Functionality

- Bright-field imaging
- Low technical complexity
- No cytotoxic fluorescent reagents
- High information content

IonOptix: Sarcomere shortening measured by digital cell geometry tracking; stimulation frequency 1Hz


Strong Correlation Between Electrical and Mechanical Abnormalities in the Human Heart

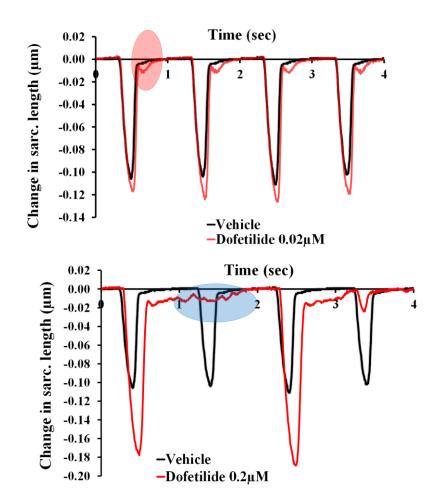
Nador et al., (1991) Circulation 84:1530-1542 and other papers (De Ferrari et al., 1994; Nakayama et al., 1998; Haugaa et al., 2009; Ferrari & Schwartz, 2009; Belardinelli et al., 2009)

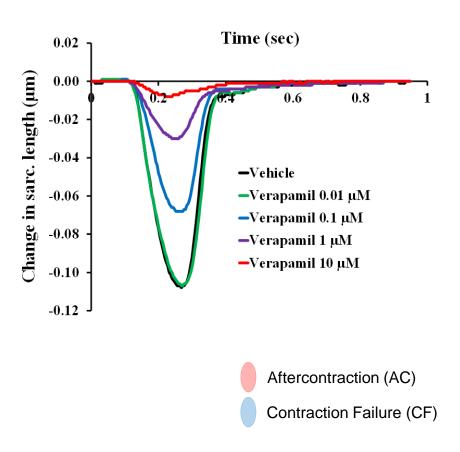
Markers of Pro-arrhythmia and Contractility Risk

Inotropy EAD
After-contraction (AC)

Normal condition

Drug treatment


- After-contraction represents the mechanical manifestation of triggered EAD
- TdP arrhythmia arises from PVCs due to triggered EADs (Kaumann et al. 1968; Noda et al. 2014)



Validating Clinical Relevance

- Validated 33 clinical well characterized controls (24 CiPA / 32 JiCSA):
 - 1) 23 pro-arrhythmic drugs
 - 2) 10 non-pro-arrhythmic drugs
 - 3) Each drug was tested at multiples of the free Effective Therapeutic Plasma Concentration (fETPC, mimic pharmacokinetic aspect)
 - 4) Establish pharmacodynamic exposure response

AC for Predicting Pro-arrhythmic Risk

Prediction of Pro-arrhythmic Risk of Drugs with 96% sensitivity

Table 1. Pro-arrhythmia prediction of the adult human primary cardiomyocyte-based model

frontiers doi: 10.3389/fphys.2017.010 in Physiology **Adult Human Primary** Cardiomyocyte-Based Model for the **Simultaneous Prediction of Drug-Induced Inotropic and Pro-arrhythmia Risk**

> Nathalie Nguyen, William Nguyen, Brynna Nguyenton, Phachareeya Ratchada, Guy Page, Paul E. Miller, Andre Ghetti and Najah Abi-Gerges*

ORIGINAL RESEARCH

		Pro-arrhythmia risk at 10-fold fETPC					
		ANABIOS	AMGEN	AMGEN	JiCSA	FDA	FDA
Drug name	Clinical TdP risk	Adult human primary ventricular	hiPSC-derived cardiomyocytes	hiPSC-derived cardiomyocytes	hiPSC-derived cardiomyocytes	hiPSC-derived cardiomyocytes	hiPSC-derived cardiomyocytes
		(Sarc. Short., AC)	(iCell®, MEA FPD)	(iCell®, MEA EAD)	(iCell®, MEA Score)	(iCell [®] , MEA Arrhythmia)	(Cor.4U, MEA Arrhythmia)
		Nguyen et al., 2017	Qu et al., 2015	Qu et al., 2016	Ando et al., 2017	Blinova et al., 2017	Blinova et al., 2017
Ajmaline			Not tested	Not tested		Not tested	Not tested
Astemizole ^a		False negative	Not tested	Not tested		Not tested	Not tested
Azimilide ^a			Not tested	Not tested	Not tested	Not tested	Not tested
Bepridil ^a			Not tested	Not tested	False negative	False negative	False negative
Chlorpromazine ^a			Not tested	Not tested	False negative	False negative	False negative
Cisapride ^a				False negative		False negative	False negative
Clarithromycin ^a			Not tested	Not tested		Not tested	Not tested
Clozapine			Not tested	Not tested	False negative	Not tested	Not tested
D, L-Sotalol ^a						Not tested	Not tested
Disopyramide ^a			Not tested	Not tested		Not tested	Not tested
Dofetilide ^a							
Domperidone ^a			Not tested	Not tested		Not tested	Not tested
Droperidol ^a			Not tested	Not tested		Not tested	Not tested
Erthromycin			Not tested	Not tested		Not tested	Not tested
Flecainide						Not tested	Not tested
Ibutilide ^a			Not tested	Not tested		Not tested	Not tested
Moxifloxacin				Not tested		False negative	False negative
Ondansetron ^a			Not tested	Not tested		Not tested	Not tested
Procanaimide			Not tested	Not tested		Not tested	Not tested
Quinidine ^a			Not tested	Not tested			
Sematilide			Not tested	Not tested		Not tested	Not tested
Terodiline			False negative	False negative		Not tested	Not tested
Vandetanib ^a			Not tested	Not tested		Not tested	Not tested

: CiPA-selected drug; Red: positive pro-arrhythmia risk; Green: negative pro-arrhythmia risk; hiPSC: human induced pluripotent stem cell (hiPSC); iCell® hiPSC-derived cardiomyocytes from Cellular Dynamics; MEA: micro-electrode array; FPD: Field Potential Duration; JiCSA: Japan iPS Cardiac Safety Assessment; FDA: Food and Drug Administration; Cor. 4U: hiPSC-derived cardiomyocytes from Axiogenesis AG; EAD: Early afterdepolarization

Prediction of Non-Pro-arrhythmic Drugs with 100% Specificity

Adult Human Primary
Cardiomyocyte-Based Model for the
Simultaneous Prediction of
Drug-Induced Inotropic and
Pro-arrhythmia Risk

Nathalie Nguyen, William Nguyen, Brynna Nguyenton, Phachareeya Ratchada, Guy Page, Paul E. Miller, Andre Ghetti and Najah Abi-Gerges*

AnaBios Corporation, San Diego, CA, United States

Table 3. Pro-arrhythmia prediction of the adult human primary cardiomyocyte-based model

		Pro-arrhythmia risk at 10-fold fETPC						
		ANABIOS	AMGEN	AMGEN	JiCSA	FDA	FDA	
Drug name	Clinical TdP risk	primary ventricular	hiPSC-derived cardiomyocytes	hiPSC-derived cardiomyocytes	hiPSC-derived cardiomyocytes	hiPSC-derived cardiomyocytes	hiPSC-derived cardiomyocytes	
		(Sarc. short AC)	(iCell®, MEA FPD)	(iCell®, MEA EAD)	(iCell®, MEA Score)	(iCell®, MEA Arrhythmia)	(Cor.4U, MEA Arrhythmia)	
		Nguyen et al., 2017	Qu et al., 2015	Qu et al., 2016	Ando et al., 2017	Blinova et al., 2017	Blinova et al., 2017	
Diltiazem ^a			Not tested	Not tested				
Diphenhydramine			Not tested	Not tested	False positive	Not tested	Not tested	
Loratadine ^a			Not tested	Not tested		Not tested	Not tested	
Mexiletine ^a			False positive	Not tested	False positive	Quiescent		
Mibefradil			Not tested	Not tested				
Nifedipine ^a			Not tested	Not tested		Not tested	Not tested	
Nitrendipine ^a			Not tested	Not tested		Not tested	Not tested	
Ranolazine ^a			False positive		False positive	False positive		
Tamoxifen ^a			Not tested	Not tested		Not tested	Not tested	
Verapamil ^a			Not tested	Not tested			Quiescent	

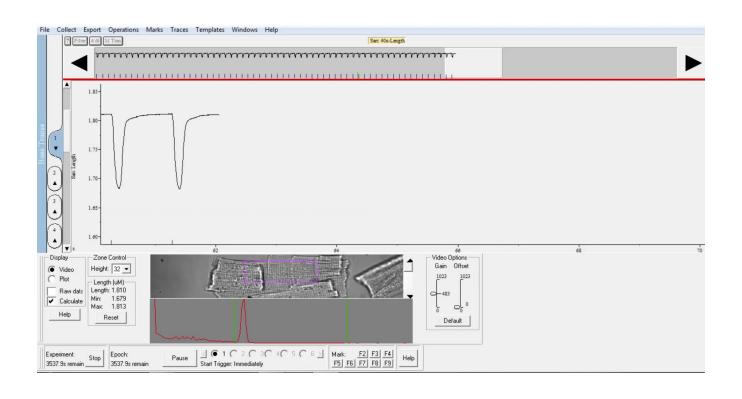
a: CiPA-selected drug; Red: positive pro-arrhythmia risk; Green: negative pro-arrhythmia risk; hiPSC: human induced pluripotent stem cell (hiPSC); iCell® hiPSC-derived cardiomyocytes from Cellular Dynamics; MEA: micro-electrode array; FPD: Field Potential Duration; JiCSA: Japan iPS Cardiac Safety Assessment; FDA: Food and Drug Administration; Cor.4U: hiPSC-derived cardiomyocytes from Axiogenesis AG; EAD: Early afterdepolarization.

ICH S7B IWG Recognizes the Value of Human Primary Cardiomyocytes for Pro-arrhythmia Assessment

Final Concept Paper

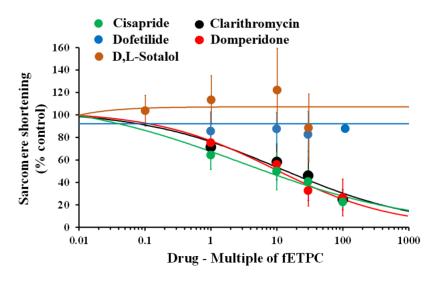
ICH S7B and E14 Q&A
Endorsed by the ICH Assembly on 15 November 2018

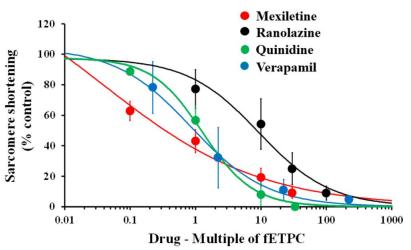
ICH S7B recommends Follow-up Studies (Sec. 2.3.5) to inform the integrated risk assessment if a test articles blocks the $hK_V11.1$ IKr current (hERG) or prolongs the QT interval. These could include the test article effects on additional ionic currents, and the use of *in vitro* and *in vivo* assays. Newer assays and technologies such as *in silico* ventricular models, and human primary and induced pluripotent stem cell-derived cardiomyocytes, can provide insights into the relative proarrhythmic liability of test articles. Guidance is needed on when and how these novel approaches play a role in determining the proarrhythmic risk to inform clinical development.



Validating Clinical Relevance of Negative Inotropes

- Validated 33 clinical well characterized controls:
 - 1) 27 multichannel blockers (mainly K+, Na+ and Ca²⁺ channels) as positive controls
 - 2) 6 selective hERG blockers as negative controls




Verapamil Induces Negative Inotropic Effect

Identification of Negative Inotropic Effects and Determination of Exposure Responses

Table 5. Sarcomere shortening effects for reference drugs measured in adult human primary cardiomyocytes					
Drug name	Top test concentration (μM)	Human myocyte effect	IC ₅₀ (μM)	Ratio (IC50/fETPC)	
Ajmaline	1.95	-ve inotrope	2	31	
Astemizole ^a	0.009	No effect	>0.009	30	
Azimilide ^a	2.1	-ve inotrope	1.07	15	
Bepridil ^a	0.96	-ve inotrope	0.7	22	
Chlorpromazine ^a	1.04	-ve inotrope	1.02	28	
Cisapride ^a	0.26	-ve inotrope	0.02	8	
Clarithromycin ^a	120	-ve inotrope	16	13	
Clozapine ^a	2.13	-ve inotrope	1.5	21	
D, L-Sotalola	450	No effect	>450	>30	
Disopyramidea	21	-ve inotrope	9.3	13	
Dofetilide ^a	0.2	No effect	>0.2	>100	
Domperidone ^a	2	-ve inotrope	0.2	10	
Droperidol ^a	0.48	-ve inotrope	0.18	11	
Erythromycin	5.1	No effect	>5.1	>30	
Flecainide	22.6	-ve inotrope	1.1	2	
Ibutilide ^a	3	-ve inotrope	2	20	
Moxifloxacin	329	No effect	>329	>30	
Ondansetron ^a	11.2	-ve inotrope	14	34	
Procainamide	1625	-ve inotrope	2215	38	
Quinidinea	100	-ve inotrope	3.6	1	
Sematilide	133	No effect	>133	>30	
Terodiline	4.35	-ve inotrope	0.7	5	
Vandetanib ^a	9	-ve inotrope	2.7	9	
Diltiazem ^a	3.84	-ve inotrope	1	8	
Diphenhydramine	1.02	-ve inotrope	0.6	17	
Loratadine ^a	0.0135	-ve inotrope	0.0175	35	
Mexiletine ^a	75	-ve inotrope	0.9	0.4	
Mibefradil	0.36	-ve inotrope	0.18	13	
Nifedipinea	0.23	-ve inotrope	0.04	5	
Nitrendipine ^a	0.091	-ve inotrope	0.06	18	
Ranolazine ^a	200	-ve inotrope	17	9	
Tamoxifen ^a	0.663	-ve inotrope	0.99	36	
Verapamil ^a	10	-ve inotrope	0.04	2	

IC₅₀; Concentration inducing 50% decrease in sarcomere shortening; Hill equation using SigmaPlot v13 was fitted to sarcomere shortening concentration-effect curves, assuming drugs would eventually cause complete inhibition of the contractility when they decreased sarcomere shortening by \geq 25%. a: CiPA-selected drug; fETPC, free effective therapeutic plasma concentration.

Nguyen et al., 2017 FiP

Inhibition of Kinase Activity to Control Tumor Growth Can Lead to Cardiotoxicity

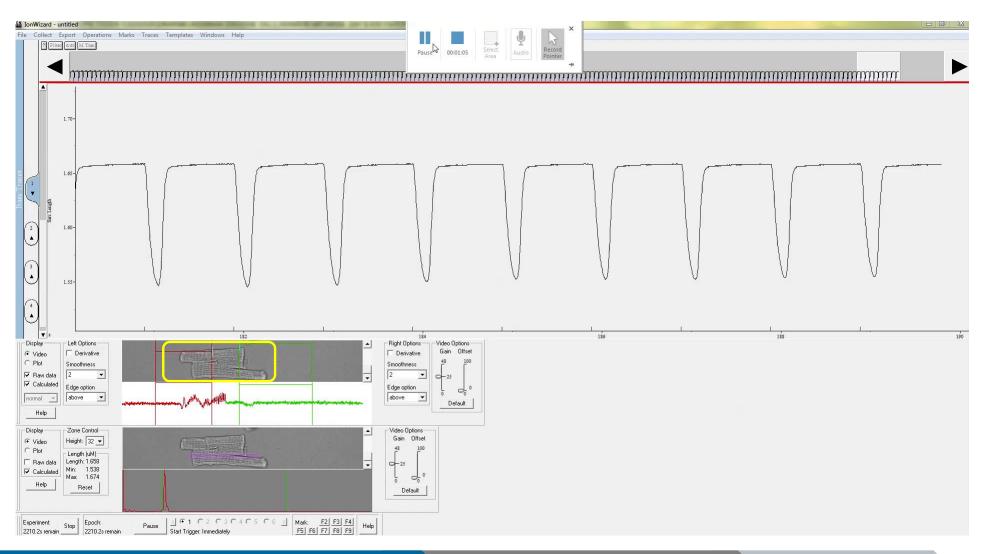
Dysregulation of tyrosine kinases

Progression to many cancers

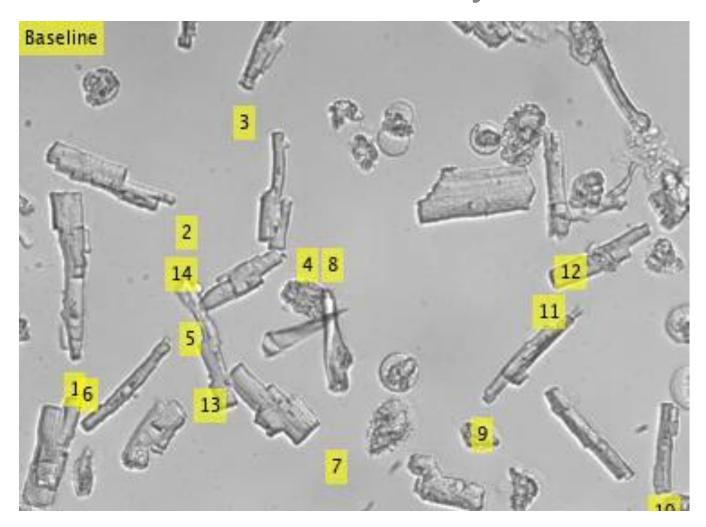
Tyrosine Kinase inhibitors (TKIs)

effective cancer treatment

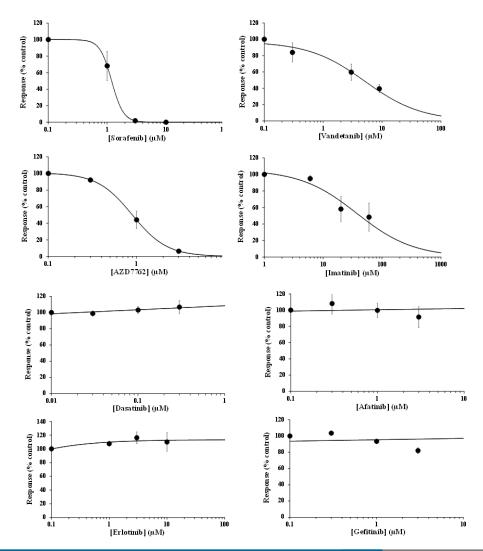
TKIs induce cardiotoxicity


heart failure reduced left ventricular ejection fraction myocardial infarction arrhythmias

Validating Clinical Relevance of Cancer Agents


- Validated 9 clinical well characterized controls:
 - 1) 4 toxic TKIs (Sorafenib, Vandetanib, AZD7762, Imatinib)
 - 2) 4 non-toxic TKIs (Erlotinib, Dasatinib, Afatinib, Gefitinib)
 - 3) One toxic anthracycline (Doxorubicin)
 - 4) Each drug was tested at multiples of the Cmax
 - 5) Each concentration was perfused for 5 mins

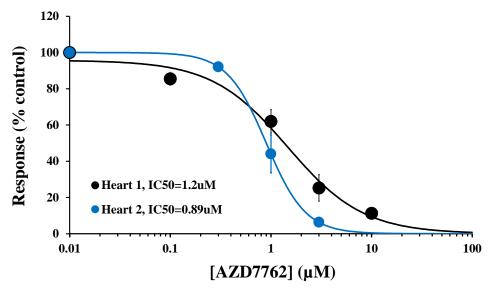
Sorafenib Induces Functional Cardiotoxicity

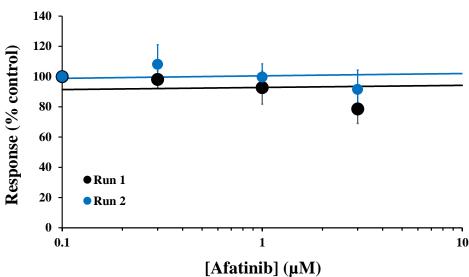


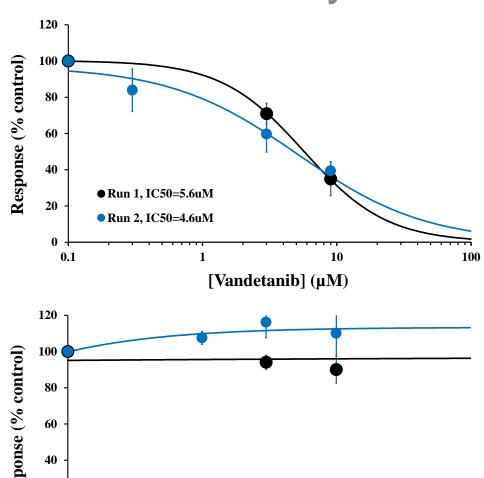
Afatinib Induces No Functional or Structural Cardiotoxicity

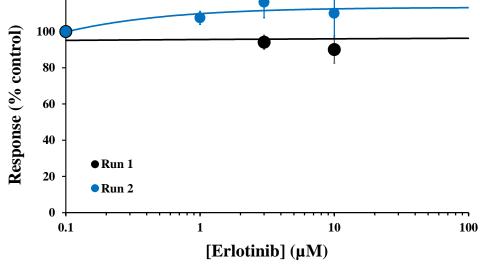
 $0.3\mu M = 3$ -fold Cmax $1\mu M = 10$ -fold Cmax $3\mu M = 30$ -fold Cmax

Tyrosine Kinase Inhibitors Affect Human Cardiomyocyte Contractility

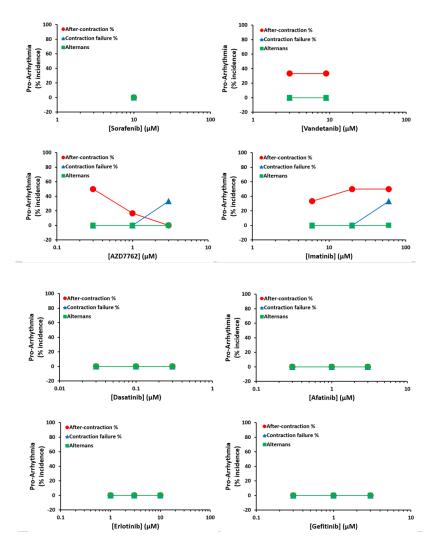

TKI	Clinical contractility risk	Human cardiomyocyte contractility	Cmax (μM)	IC ₅₀ (μ M)	Ratio (IC ₅₀ /C _{max})
Sorafenib			3.4	1.2	0.35
Vandetanib			1.8	4.6	2.55
AZD7762			0.12	0.8	6
Imatinib			5	44	8
Erlotinib			2.5	>10*	>4
Dasatinib			0.01	>0.3	>30
Afatinib			0.1	>3	>30
Gefitinib			0.1	>3	>30

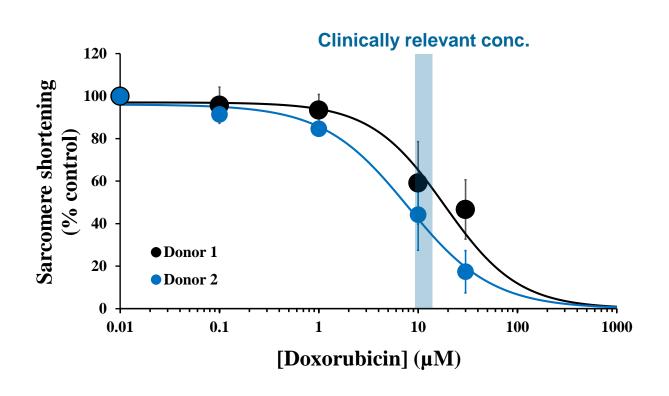

Similar human cardiac tissue data recently published by Schneider C et al., 2018 Nature Scientific Reports

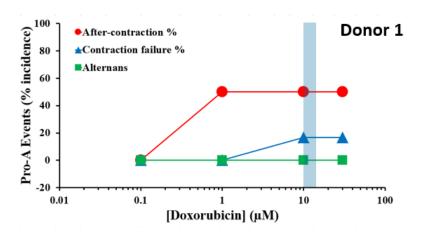

*: Limit of solubility

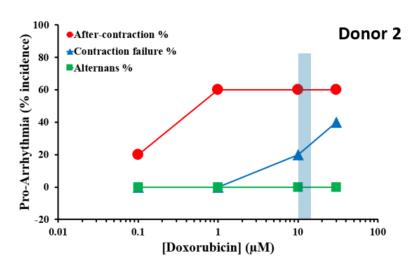


Low Inter- and Intra-Heart Variability




Human cardiomyocyte Contractility Model Differentiates Pro-arrhythmic from Non-Pro-arrhythmic TKIs




TKI	Clinical contractility risk	Human cardiomyocyte pro-A	Cmax (µM)	Pro-A conc. (μΜ)	Ratio (Pro-A conc./C _{max})
Vandetanib			1.8	3	1.6
AZD7762			0.12	0.3	2.5
Imatinib			5	6	1.2
Sorafenib			3.4	>10	>3
Erlotinib			2.5	>10*	>4
Dasatinib			0.01	>0.3	>30
Afatinib			0.1	>3	>30
Gefitinib			0.1	>3	>30

*: Limit of solubility

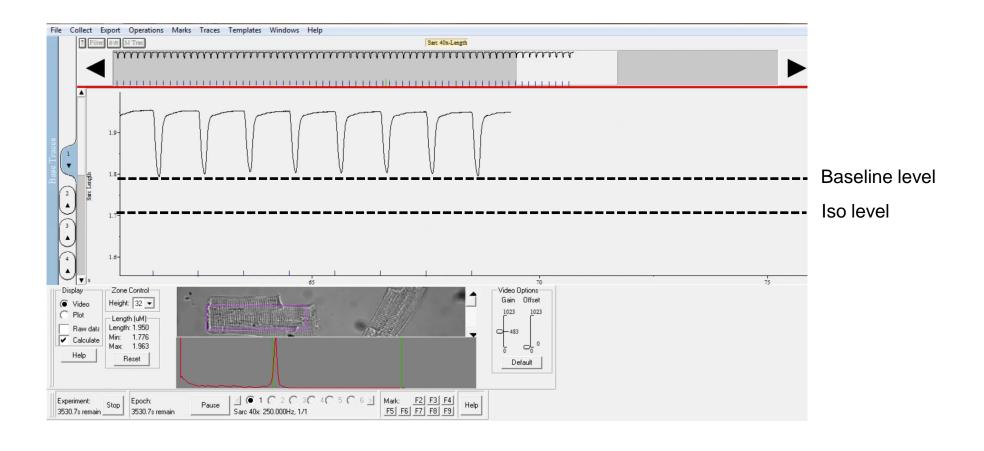
Doxorubicin, Anthracycline Agent, Affects Human Cardiomyocyte Contractility and Induces Pro-arrhythmia

Adult Human Heart Kinome Profiling

Cancer-driving kinases

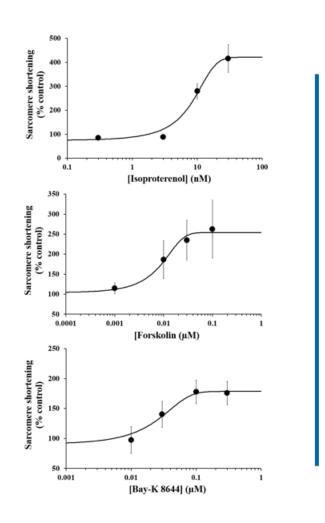
Expression and role of kinases in cancer are well understood

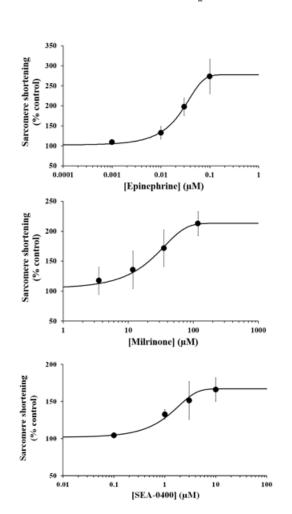
Heart kinases

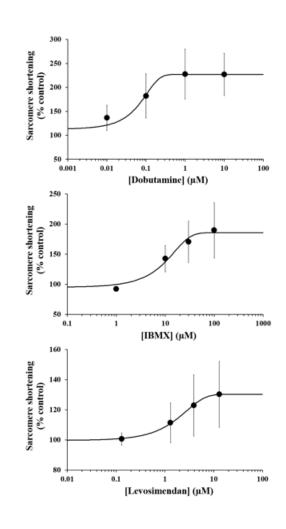

- Expression & function of kinases in cardiac tissue are poorly characterized
- Mechanisms of KI-induced cardiotoxicity are not fully understood

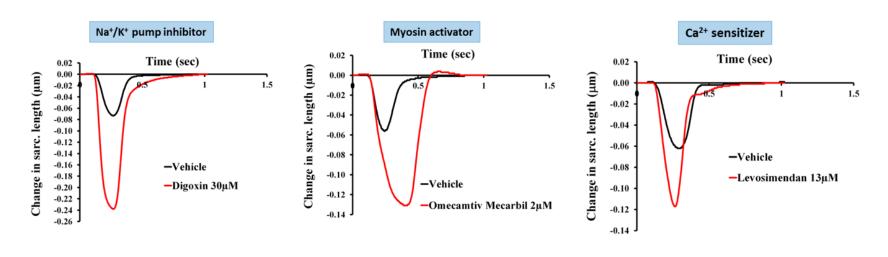
Positive Inotropy Assessment - Validation Set Targets 12 Different Mechanisms of Action

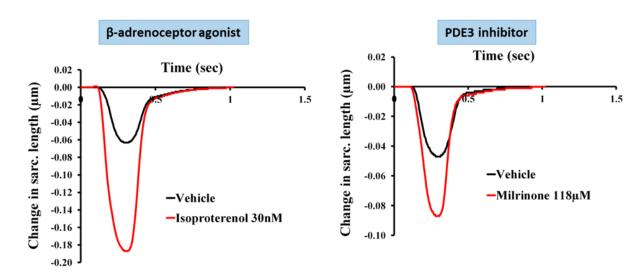
Mechanism of Action	Drug
Na ⁺ /K ⁺ pump inhibition	Digoxin
Na ⁺ /K ⁺ pump inhibition	Ouabain
Na ⁺ /Ca ²⁺ exchanger inhibition	SEA-0400
Myosin activation	Omecamtiv Mecarbil
Myosin activation	EMD-57003
Ca ²⁺ sensitization	Levosimendan
Non-selective b-adrenoceptor activation	Isoproterenol
Non-selective b-adrenoceptor activation	Epinephrine
b1-adrenoceptor activation	Dobutamine
PDE3 inhibition	Milrinone
PDE inhibition	IBMX
Ca ²⁺ channel activation	Bay-K 8644
Adenylyl cyclase activation	Forskolin
Adenylyl cyclase activation	NKH-477
SERCA activation	N106
RyR activation	Caffeine

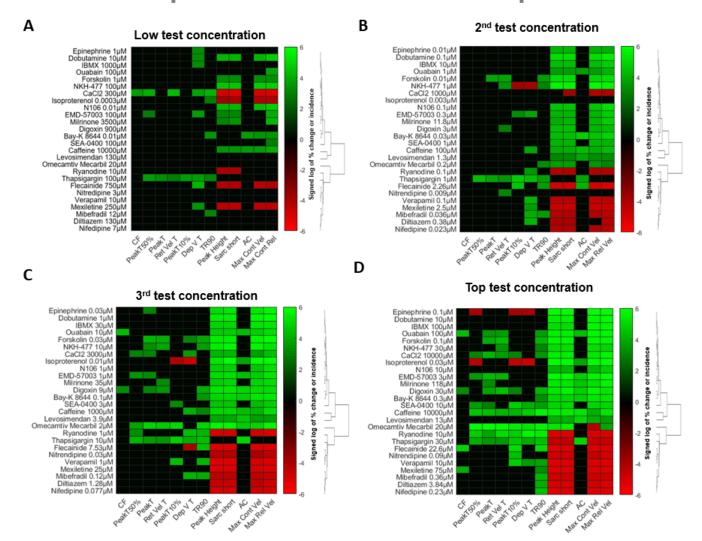


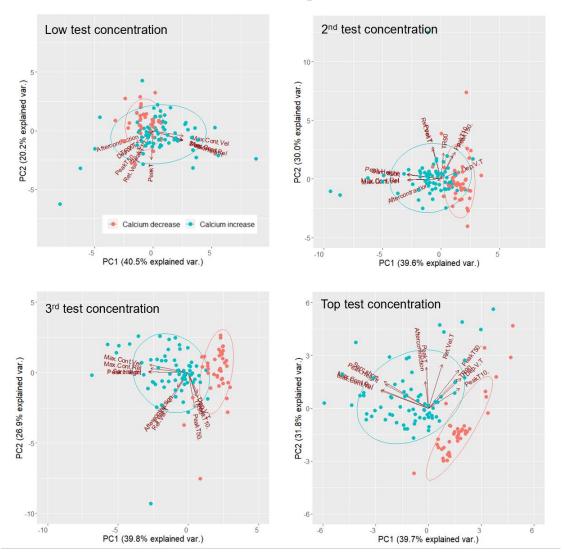

Isoproterenol Induces Positive Inotropic Effect




Identification of Positive Inotropic Effects and Determination of Exposure Responses

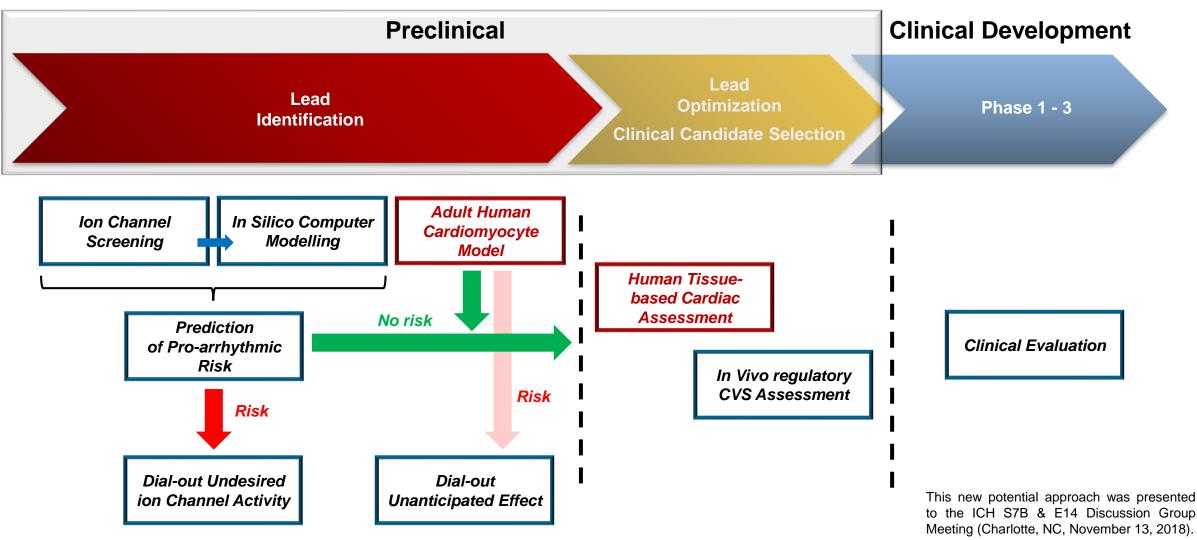


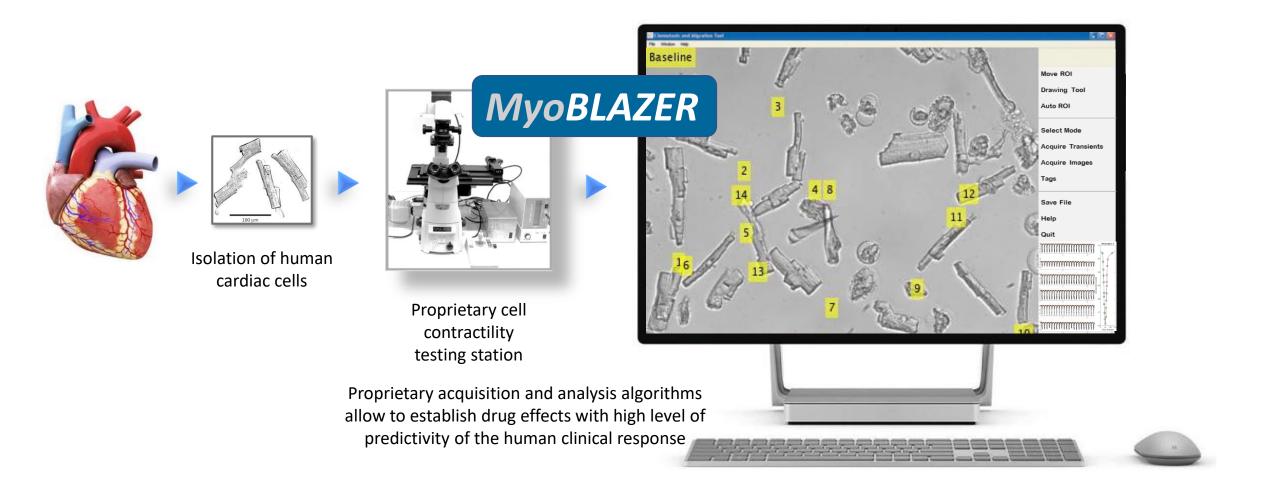

Differential Effects of Positive Inotropes



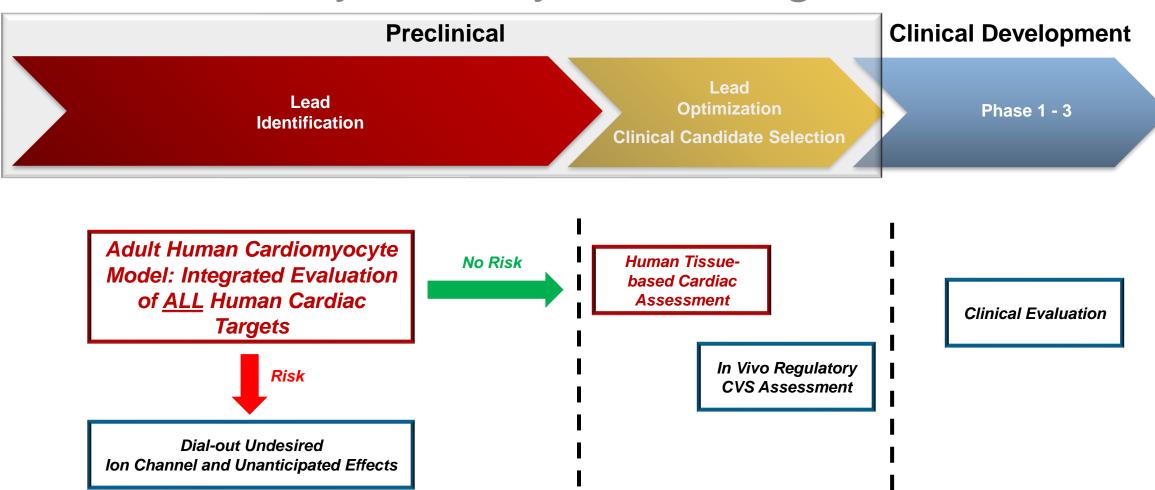
Cluster Analysis is Used to Mechanistically Fingerprint Compounds with Inotropic Effects

Heatmap data generated from 4th concentration data. Red and green colors iindicate decrease and increase of >25% and 10% change, respectively. Black colors iindicate no effect (<-25% < % change < 10%). Numbers in boxes indicate means % change relative to vehicle.


Segregation of Ca²⁺-Dependent Mechanisms


2D PCA generated from top test concentration data. Blue and red colors indicate increase and decrease in Ca²⁺, respectively. Ellipses show confidence intervals of 0.75.

Human Adult Cardiomyocyte Model Integrated Into the CiPA Paradigm



MyoBLAZER™: Proprietary Technology Used to Measure the Biomarker Currently Undergoing Qualification with FDA

Adult Human Cardiomyocyte Model Early Primary Screening Tool

Adult Human Cardiomyocyte Model Early Primary Cardiotoxicity Screening Tool

- Permit rigorous and integrated human cardiac drug discovery at the preclinical stages
- Differentiate safe from cardiotoxic drugs
- Can enable mechanistic assessment
- Predictive of clinical outcomes

Thank You!

