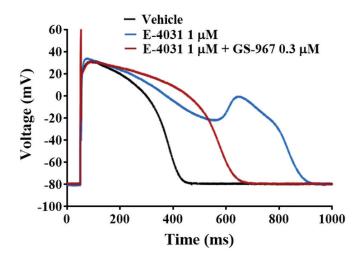

The AnaBios **Advantage**

- High-quality human heart cells
- Ethically-consented donor samples
- · Functional, translational tissue samples


(858) 224-7360 info@anabios.com AnaBios is the only contract research organization in the United States with direct access to a vast network of hospitals with human tissue and intact, functional human hearts from consented donors. We have more than 10 years of experience procuring ethically-sourced human tissue samples processed utilizing proprietary methods to maximize success in experimentation involving proteomics, metabolomics and gene expression analysis. These specialized tissue samples are ideally suited for supporting scientific research and drug discovery in several therapeutic areas.

ISOLATED CARDIOMYOCYTES FOR IN VITRO ASSAYS

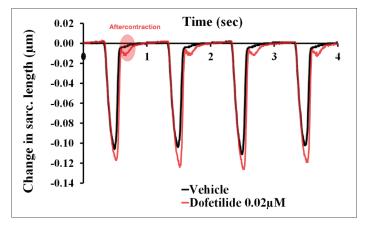
The figure below shows a typical human heart that AnaBios uses to isolate cardiomyocytes and phase contrast microscopy images of representative adult human primary cardiomyocytes. Isolated cardiomyocytes were found to be Ca2+-tolerant, retain rod-shaped morphology and exhibit cross striations.

ACTION POTENTIAL DURATION

In the image above, GS-967 restores the action potential duration and prevents incidence of early afterdepolatizations. Representative action potential recordings are shown in the presence of Vehicle (0.1% DMSO), E-4031 (hERG channel inhibitor) and E-4031 + GS-967 (Late Na+ current inhibitor).

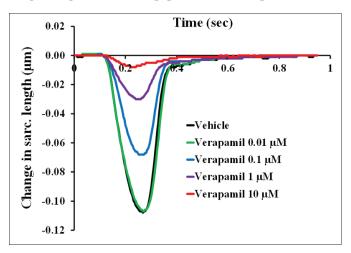
Human Heart Tissue Regions

Aorta	Epicardium
Aortic Valve	Mitral valve
Aortic Semilunar Valve	Myocardium
Ascend Coronary	Papillary
Atrium Appendage	Pulmonary s
	_


Atrium Appendage Pulmonary semilunar valve
Atrium Trabecula Septum
Atrium Wall Sinoatrial node

Bicuspid Valve Subclavian artery
Brachiocephalic Artery Tricuspid valve
Carotid Artery Ventricle

Circumflex Artery Ventricular Outflow Tract
Coronary Ventricular Purkinje
Descend Coronary Ventricular Trabecula


Endocardium

PRO-ARRHYTHMIA MARKERS

Identification of Dofetilide arrhythmic risk: Compared to the black control trace, the contractility transients recorded in the presence of Dofetilide (0.02 μ M, red trace) induce episodes of "after-contraction" (AC, red shaded area) at a pacing frequency of 1Hz.

INOTROPY MEASUREMENTS

Identification of Verapamil's negative inotropic potential: Compared to the black control trace, the contractility transients recorded in the presence of Verapamil at 0.01, 0.1, 1, and 10µM inhibit sarcomere shortening with no AC episodes at a pacing frequency of 1Hz.

AnaBios offers a wide range of high-quality human tissue types, including heart, brain and spinal cord. We offer both normal and diseased tissue, and provide demographic details, including sex, age, race and body mass index.

Tissue or Cell Model	Functional Parameter	Measured Endpoint	Significance
	Contractility	Myocyte contraction (sarcomere shortening)Changes in contractility transient's parameters	 Integrity of excitation- contraction coupling Identification of drug-related contractility & arrhythmia risk
Adult Human Primary Atrial & Ventricular Cardiomyocytes	lon channel function	Ionic currents	Drug activity on cardiac ion channels
	Action potential generation	Action potentialsChanges in action potential's parameters	Drug effects on cardiac excitability, depolarization & repolarization
Adult Human Primary Cardiac Fibroblasts	Fibrosis	Changes in collagen expression	Drug-related induction of fibrosis
Adult Human Ventricular or Atrial Trabeculae	Contractility	Trabeculae contraction forceChanges in contractility transient's parameters	 Integrity of excitation- contraction coupling Identification of drug-related contractility risk
Adult Human Ventricular Trabeculae	Action potential generation	Action potentialsChanges in action potential's parameters	Drug effects on cardiac excitability, depolarization & repolarization (arrhythmia risk)
Adult Human Sinoatrial Node	Spontaneous action potential generation	Spontaneous action potentials frequencyChanges in action potential frequency	Identification of drug-related chronotropic activity
Adult Human Coronary Rings	Force of contraction & relaxation	Contraction force	Identification of drug-related hypo-, hyper-tension risk